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Hyperbolic heat conduction models have been proposed to characterize the breakdown of Fourier’s law,
i.e. thermal waves. In this paper, three mathematical representations for hyperbolic heat conduction,
namely temperature representation, hybrid representation and heat flux representation, and their corre-
sponding characteristics are first analyzed. The hybrid representation is demonstrated to be preferable
for numerical calculations and contains sufficient heat transport information. Specifically designed for
solving transient heat conduction problems in the hybrid representation, an improved alternative
direction implicit (ADI) method based on staggered grids is then developed. This algorithm focuses on
the entire hyperbolic equation set instead of one single hyperbolic equation, and it adopts chasing
method rather than iteration, which enables to significantly save computing time and storage space.
Characteristics analyses on the definite conditions show that for each side only one boundary condition
is necessary for Cattaneo-Vernotte (CV) type hyperbolic heat conduction. The advantages of the hybrid
representation are also demonstrated by numerical simulations. Besides, the initial heat flux, which
implies the initial phonon momentum in dielectrics, has an important influence on the propagation pat-
terns of thermal waves, changing the way of energy conveying. The mechanism of phonon momentum
conservation leads to the vector characteristics of thermal waves, and causes the direction preference
in hyperbolic heat conduction.

� 2019 Published by Elsevier Ltd.
1. Introduction

Conventional Fourier’s heat conduction law leads to the para-
dox of infinite thermal perturbation speed due to the nature of dif-
fusion equation [1]. Hyperbolic heat conduction equations (HHCE)
were then proposed, implying that the thermal energy propagates
in a media in a wavelike behavior and introducing the concept of
thermal wave [2–4]. Thermal wave is related to the experimental
observations of second sound [5–9] and time delay [10]. With
the development of ultrafast laser heating and nanoscale material
fabrication, many heat conduction phenomena cannot be
described by Fourier’s law, calling for a new understanding of
hyperbolic heat transport mechanism. In the past few decades,
hyperbolic heat conduction has been widely investigated and
applied in the field of nano-electromechanical systems [3,4], bio-
logical medicine [11,12], material flaw analysis [13], functional
graded materials [14,15] and so on.

Many hyperbolic models have been proposed from different
views and scales. Cattaneo and Vernotte [16,17] developed the first
mathematical hyperbolic heat conduction equation, namely
Cattaneo-Vernotte (CV) equation. Guyer and Krumhansl [18,19]
solved the linearized phonon Boltzmann equation and derived
the hydrodynamics model. Green and Laws [20] postulated a
new entropy inequality and gave a damped wave equation by
linearized simplification. Tzou [10,21] explored the heat conduc-
tion phenomena in metals and developed the single phase lag
model into dual phase lag model, while in the further investiga-
tions it is demonstrated that the dual phase lag model might lead
to non-well posed problems and cause unphysical defects [22–25].
Guo et al. [26–28] established the thermomass model based on the
equality between thermal energy and mass, and derived the
motion equations of thermomass. Multiple terms are included in
these models causing the non-Fourier effects such as inertial effect,
nonlocal effect and nonlinearity [29]. Multiple effects and their
coupled reaction make the heat conduction more complex. Inertial
effect is especially significant, which leads the parabolic equation
into a hyperbolic one. In this paper, the inertial effect is focused
on while other effects are ignored, for a better understanding of
hyperbolic heat conduction. CV equation is the best choice,
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Nomenclature

Letters
A coefficient matrix for x1
B coefficient matrix for x2
C coefficient matrix for x3
D nonhomogeneous term
G coefficient matrix
I unit matrix
M domain symbol
U variable vector upper triangular matrix
q heat flux
m unit vector
F nonhomogeneous vector term
L lower triangular matrix
l position vector
w intermediate variable vector
z node algebraic vector
A amplitude of heat flux
Cv volume specific heat
f arbitrary known function
g arbitrary known function
m arbitrary known function
k thermal conductivity
L length scale of regime
E inner energy

n number of dimensions component of unit vector
T temperature
t time
x coordinates of the domain
y coordinates of the domain

Greek symbols
s relaxation time
k characteristic face
a thermal diffusivity
q mass density
h coefficient vector

Superscripts
T transposition

Subscripts
1, 2, 3 index
0 initial state
i component of vector
j component of vector
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qþ s @q
@t

¼ �krT; ð1Þ

where q and T represent the heat flux and local temperature,
respectively. s is the relaxation time and k is the thermal conductiv-
ity. CV equation promotes the heat flux field to a more independent
level, making the whole equation set own vector characteristics.
The whole hyperbolic equation set consists of the energy conserva-
tion equation,

qCv
@T
@t

þr � q ¼ 0; ð2Þ

and CV equation (Eq. (1)). The hyperbolic characteristics of the
equation set lead to strongly directional preference and more prop-
agation phenomena different from conventional heat conduction
[30]. There is also a big difference in the analytical methods
between hyperbolic equations and parabolic equations, which will
be discussed in detail in the following sections.

Numerical simulations has been studied for thermal waves in
the past few decades [31–37], most of which focus on one-
dimensional problems. Zhang et al. [38,39] studied the damping
and dispersion of thermal waves and made it clear how thermal
waves propagate. However, the vector characteristics are ignored
because its influences take effect only in multidimensional heat
conduction. Yang [40] proposed a high-resolution numerical
method to solve two-dimensional linear HHCE with constant ther-
mal properties. Chen and Lin [41] then studied the problems with
temperature-dependent thermal properties via a hybrid applica-
tion of the Laplace transform and control-volume formulation.
Shen and Han [42] dealt with nonlinear boundary conditions and
used characteristic relationship to find the unknown boundary
condition value (either heat flux or temperature) and an explicit
Total Variation Diminishing (TVD) scheme was adopted. Wu and
Li [43] introduced the discontinuous Galerkin finite element
method to solve two-dimensional HHCE problems. Moosaie et al.
[44] gave an analytical solution for a rectangular regime with arbi-
trary initial conditions and periodic boundary conditions based on
superposition solution, which as mentioned could be used as a
benchmark. Ma et al. [45] pushed forward to give the analytical
solution for a square plate subjected to a moving laser pulse. Yang
[46] deduced an inverse solution from a finite difference method,
the concept of future time and a modified Newton-Raphson
method to estimate boundary conditions of the two-dimensional
hyperbolic heat conduction problems. Recently, Rieth et al. [47]
developed an implicit form of finite difference method to solve
the Guyer-Krumhansl equation and demonstrated that the
Crank-Nicolson-type implicit scheme is the most accurate. Most
of them treated the problem as the extension of Fourier’s heat con-
duction, ignoring the fascinating characteristics brought by the
hyperbolic effect.

Alternative direction implicit (ADI) method was first proposed
to solve parabolic heat conduction problems [48], which was
extended to hyperbolic systems shortly afterwards [49]. Douglas
et al. [50] gave the general formulation of ADI, including both para-
bolic and hyperbolic problems and enriching the theories. Then,
this method has been developed into several unconditionally
stable schemes [51,52], which are second-order accurate both in
time and in space. As for higher accuracy scheme, compact scheme
was combined with ADI method [53–55], some of which are
fourth-order accurate both in time and space. Besides, ADI method
was also applied to nonlinear hyperbolic systems and the second
type boundary conditions (Neumann boundary condition) [56].
However, these updates mainly focus on the second order wave
equations. In this paper, it is demonstrated that in hyperbolic heat
conduction systems, pure wave equation, even with energy dissi-
pation, is not sufficient and might miss some information, requir-
ing an improved ADI scheme specifically designed for hyperbolic
heat conduction.

It is found from all above that hyperbolic heat conduction is
quite different from conventional parabolic heat conduction and
wave propagation. In order to improve the recognition of the
hyperbolic heat conduction systems from both physical and math-
ematical views, two points are explored below. The analyses of the
vector characteristics for hyperbolic heat conduction are expressed
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in Section 2 and an improved hybrid ADI method based on stag-
gered grids is developed in Section 3. In Section 4, three numerical
examples calculated by the improved ADI method are shown to
depict the propagation pattern of thermal waves and highlight
the vector nature of heat conduction.

2. Representations and model analyses

2.1. Three mathematical representations

Before talking about the difference between hyperbolic heat
conduction and parabolic heat conduction and elastic wave
propagation, three different kinds of representations for hyperbolic
systems are discussed, namely the temperature representation, the
hybrid representation and the heat flux representation. These
representations are sorted by the state variables adopted in the
equation set.

The temperature representation substitutes the heat flux field
with the temperature field and derives a second order telegraph
equation, constructed by the energy conservation Eq. (2) and CV
Eq. (1),

@2T
@t2

þ 1
s
@T
@t

¼ a
s
DT; ð3Þ

where a is the thermal diffusivity,

a ¼ k
qCv

: ð4Þ

Temperature representation is the most common way in solving
hyperbolic heat conduction problems, which has obvious advan-
tages. In n-dimensional regimes (n = 1, 2, 3), the hyperbolic equa-
tion set consisting of n + 1 equations is transformed into one
single equation with the state variable T. It is convenient for both
theoretical solutions and numerical simulations. However, this
kind of representation is not so perfect because some information
might be missing, which will be discussed in detail in Section 2.2.

In order to solve the equations in the temperature representa-
tion, boundary conditions and initial conditions are necessary. In
Eq. (3), the highest derivative of temperature field in time is second
order, so it calls for two initial conditions. As for each boundary,
one boundary condition is required. The initial conditions are sup-
posed to have the form as

Tðx; t ¼ 0Þ ¼ f 1ðxÞ; ð5:1Þ

@T
@t

ðx; t ¼ 0Þ ¼ g1ðxÞ; ð5:2Þ

where f1(x) and g1(x) are two continuous smooth functions, denot-
ing the initial state of temperature field and the temporal deriva-
tive, respectively. In this paper, two kinds of boundary conditions
are analyzed, namely the adiabatic boundary and isothermal
boundary. The adiabatic boundary at the position x = l is set to be

@T
@x

ðx ¼ l; tÞ ¼ 0: ð6Þ

And the isothermal boundary condition at the position x = l is
set to be

Tðx ¼ l; tÞ ¼ T0: ð7Þ
As for the hybrid representation, it directly uses the heat flux

constitutive equation (Eq. (1)) and energy conservation equation
(Eq. (2)) to construct the equation set. The representation adopts
both temperature and heat flux fields as the state variables, focus-
ing on solving the equation set instead of one single equation. It
means that in n-dimensional heat conduction problems, there are
n + 1 state variables influencing each other with their time evolu-
tion equations. Of course, Eq. (1) could be changed into any other
first-order equation to replace CV equation, making it easy to
extend to other thermal wave models easily. Another advantage
is that it is convenient for numerical calculations because the time
evolution is first order. Compared with the temperature represen-
tation, more variables are considered in the hybrid representation,
making it more complex and more difficult to directly derive a
theoretical solution. The initial conditions require the state of heat
flux field and temperature field at the same time to make sure that
the problem is well-posed,

Tðx; t ¼ 0Þ ¼ f 2ðxÞ; ð8:1Þ

qðx; t ¼ 0Þ ¼ g2ðxÞ: ð8:2Þ
The adiabatic boundary condition means that there is no heat

flux at the boundary, namely

qðx ¼ l; tÞ ¼ 0: ð9Þ
The temperature field is explicit in the representation, so the

isothermal boundary can be expressed as

Tðx ¼ l; tÞ ¼ T0: ð10Þ
The heat flux field could also be used as the only state variables,

which is called the heat flux representation in this paper. If the
temperature field is substituted with the heat flux field in Eqs.
(1) and (2), the time evolution equation of heat flux could be
expressed as

@2q
@t2

þ 1
s
@q
@t

¼ a
s
rðr � qÞ: ð11Þ

Due to the vector nature of heat flux, Eq. (11) includes n equa-
tions in n-dimensional heat conduction problems (n = 1, 2, 3). The
individual equations in Eq. (11) are

@2qi

@t2
þ 1
s
@qi

@t
¼ a
s

@2qj

@xi@xj
; ð12Þ

where qi represents the component of the heat flux vector and Ein-
stein’s summation convention is used to simplify the expression.
Actually, rather few researches adopt this kind of representation
because it could only give the time evolution of heat flux, compared
with which the time evolution of temperature is more familiar and
easier to accept. In order to get the temperature distribution profile,
it requires the initial temperature distribution as one more initial
condition. Therefore, three initial conditions are necessary in total,
where two heat flux initial conditions

qðx; t ¼ 0Þ ¼ f 3ðxÞ; ð13:1Þ

@q
@t

ðx; t ¼ 0Þ ¼ g3ðxÞ: ð13:2Þ

and one temperature initial condition

Tðx; t ¼ 0Þ ¼ m3ðxÞ; ð13:3Þ
are supposed to be included. These three functions are supposed to
be smooth enough. The temperature distribution profile is derived
from the energy conservation equation (Eq. (2)) by integrating it
with respect to time. The adiabatic boundary condition is expressed
as

qðx ¼ l; tÞ ¼ 0: ð14Þ
The isothermal boundary condition requires that the tempera-

ture field at the boundary keeps constant while time goes on, so
it is expressed as

@q
@x

ðx ¼ l; tÞ ¼ 0: ð15Þ
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2.2. Comparisons between the three representations

The temperature representation is the most common one to
describe aheat conduction system. The temperaturefield, analogous
with the effect of displacement field in wave equations, varies
according to a telegraph equation. Nevertheless, there is an obvious
differencebetween thehyperbolicheat conductionequationand the
wave equation. The intermediate variable force field is defined
totally by displacement u. That is to say, in the wave equation, if
the displacement u is known, the vector force field can be derived
fromthe constitutive equation.However, there are two independent
variables in the constitutive equation of hyperbolic heat conduction,
namely the heat flux field and the temporal derivative of heat flux
field. If the temperature field T is known, the heat flux field which
has similar status with the force field in wave equation, cannot be
derived. The only thing we make sure is that the sum of heat flux
and its derivative equals a known variable,

qi þ s @qi

@t
¼ f ðTÞ: ð16Þ

Another example is that the adiabatic boundary is not properly
assembled in the temperature representation. As shown in Eq. (16),
only the following equation is satisfied,

qi þ s @qi

@t
¼ 0: ð17Þ

If the derivative of heat flux with respect to time is nonzero, the
heat flux at the boundary is also nonzero, which contradicts with
the definition of adiabatic boundary. Besides, in temperature repre-
sentation, thedirection informationof the initial heatflux ismissing.
When the derivative of temperature field with respect to time is
used as the initial condition, the divergence of heat flux is known,
but the initial heat flux distribution is still unknown. In the simula-
tion example 2 in Section 4, it can be seen that the two different
problems might have the same expressions for initial conditions
using temperature representation and it fails to reveal the
differences.

The heat flux representation requires more calculations in order
to get the temperature distribution from the energy conservation
equation and it includes n second order time evolution equations
in total. But its advantages are that all the information is retained
so that the vector characteristics are explicitly displayed and as
shown in reference [57], heat flux boundary is easy to define. The
distribution of heat flux shows the speed of thermal wave propaga-
tion, denoting the ability of energy conveying.

The hybrid representation consists of (n + 1) individual first
order equations. It is preferable in numerical calculations due to
its lower order. Besides, the direction characteristics and the other
information is perfectly retained because all the details are dis-
played. The disadvantages are that all the information is mixed
together and that it is more difficult for theoretical analyses than
other representations.

Based on different destinations and methods, different repre-
sentations of hyperbolic heat conduction can be chosen. If the the-
oretical analysis is to be derived, the temperature representation
and the heat flux representation are better. If the vector character-
istics are emphasized, the heat flux representation is a better
choice. If numerical simulations are to be conducted, the hybrid
representation might be a proper one. The above discussion high-
lights the main points which should be carefully considered when
these representations are adopted.

2.3. Characteristics analyses for definition conditions

In order to get the solutions of HHCE, proper boundary condi-
tions and initial conditions are necessary. A recognition is that
the heat flux field and temperature field cannot be set at the same
boundary [42]. In this paper, characteristics analyses are used to
give a more detailed theoretical demonstration.

Here, in order to make it more general, an orthotropic medium
is studied and 3-dimensional HHCEs are derived. It is demon-
strated that the analyses for the isotropic media and the analyses
for 2- or 1-dimensional heat conduction problems are only typical
cases of the following method and the same conclusions are
reached. The HHCEs are written as

qCV
@T
@t

þ @qx1

@x1
þ @qx2

@x2
þ @qx3

@x3
¼ 0; ð18:1Þ

qx1 þ s1
@qx1

@t
¼ �k1

@T
@x1

; ð18:2Þ

qx2 þ s2
@qx2

@t
¼ �k2

@T
@x2

; ð18:3Þ

qx3 þ s3
@qx3

@t
¼ �k3

@T
@x3

: ð18:4Þ

It can be transformed into a form of matrix, as

@U
@t

þ A
@U
@x1

þ B
@U
@x2

þ C
@U
@x3

¼ D; ð19Þ

where the matrixes are

U ¼ ½T; qx1
; qx2

; qx3
�T ; ð20:1Þ

A ¼

0 1
qCV

0 0
k1
s1

0 0 0

0 0 0 0
0 0 0 0

2
66664

3
77775; ð20:2Þ

B ¼

0 0 1
qCV

0

0 0 0 0
k2
s2

0 0 0

0 0 0 0

2
66664

3
77775; ð20:3Þ

C ¼

0 0 0 1
qCV

0 0 0 0
0 0 0 0
k3
s3

0 0 0

2
66664

3
77775; ð20:4Þ

D ¼ 0 � 1
s1
qx1

� 1
s2
qx2

� 1
s3
qx3

h iT
: ð20:5Þ

Feature faces can be found through the conversion of coordi-
nates which transforms the variables (t, x1, x2, x3) into (k, z1, z2,
z3). Assume that for the feature faces the following relationships
are satisfied,

kðt; x1; x2; x3Þ ¼ 0; ð21Þ

@

@t
¼ @

@k
@k
@t

þ @

@zi

@zi
@t

; ð22Þ

@

@xj
¼ @

@k
@k
@xj

þ @

@zi

@zi
@xj

; ð23Þ

where i is the dummy index and j is 1, 2 and 3, respectively. k is the
coordinate axis perpendicular to the feature faces. That is to say, the
other coordinate axes are in the plane of feature faces. Eq. (21) gives
a way that the information is conveyed along the face. Then Eq. (19)
is transformed by Eqs. (22) and (23) into
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@U
@k

@k
@t

þ A
@k
@x1

þ B
@k
@x2

þ C
@k
@x3

� �

þ @U
@zi

@zi
@t

þ A
@zi
@x1

þ B
@zi
@x2

þ C
@zi
@x3

� �
¼ D: ð24Þ

In the feature faces, the governing equation has nothing to do
with the coordinate axes in the planes, namely perpendicular to
k. So @U

@zi
is supposed to be zero. To make sure that @U

@k has more than

one solution, the coefficient matrix of @U
@k is supposed to have zero

determinant, namely

I
@k
@t

þ A
@k
@x1

þ B
@k
@x2

þ C
@k
@x3

����
���� ¼ 0: ð25Þ

The vector m is set to be

m ¼ @k
@t

;
@k
@x1

;
@k
@x2

;
@k
@x3

� �T
¼ nt;nx1 ;nx2 ;nx3

� �T
: ð26Þ

Then Eq. (25) are transformed into

Gj j ¼

nt
k1
s1
nx1

k2
s2
nx2

k3
s3
nx3

nx1
qCV

nt 0 0
nx2
qCV

0 nt 0
nx3
qCV

0 0 nt

������������

������������
¼ 0: ð27Þ

The roots are

nt;1 ¼ nt;2 ¼ 0; ð28:1Þ

nt;3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

qCV

k1
s1

n2
x1
þ k2
s2

n2
x2
þ k3
s3

n2
x3

� �s
; ð28:2Þ

nt;4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

qCV

k1
s1

n2
x1
þ k2
s2

n2
x2
þ k3
s3

n2
x3

� �s
: ð28:3Þ

When nt equals zero, it means that this face is not relevant with
time and in this direction, the information cannot be delivered to
other places. So the boundary conditions are not necessary. When
nt is more than zero, the information is transferred from the
boundary into the inner space, so a boundary condition is supposed
to be proposed to give enough information. However, when nt is
less than zero, the information is transferred from the inner space
to the boundary, no boundary condition is supposed to be pro-
posed, and the variables are derived from compatibility conditions.
In a three-dimensional heat conduction problem, for each side only
one boundary condition is required. That is to say, at one boundary
there are four independent variables, T, qx1, qx2, qx3, but not all of
them can be defined to get a well-posed problem. Accurately
speaking, only one field of the four or only one kind of relationship
of these four fields is supposed to be provided and if more relation-
ships are given, they will either fail to be transmitted from the
boundary or contradict the constitutive equations.

Different from fluid mechanics, the lack of convective term in
CV equation determines that the interactions of heat fluxes in dif-
ferent directions is not sufficient, making it difficult to influence
each other explicitly. So the direction parallel with the boundary
is less important than the vertical direction because it is hard to
deliver the information into the inner space.

The compatibility relation can also be derived by this method
and the relationships between the variables in the evolution equa-
tions are established. The kernel space of G are calculated,

h1 h2 h3 h4½ �G ¼ 0: ð29Þ
And the following solution vectors are obtained:
when nt – 0,
h1 ¼ 1; h2 ¼ � nx1

qCVnt;3
; h3 ¼ � nx2

qCVnt;3
; h4 ¼ � nx3

qCVnt;3
ð30:1Þ

h1 ¼ 1; h2 ¼ � nx1

qCVnt;4
; h3 ¼ � nx2

qCVnt;4
; h4 ¼ � nx3

qCVnt;4
ð30:2Þ

when nt ¼ 0,

h1 ¼ 0; h2 ¼ 1; h3 ¼ 1; h4 ¼ �
k1
s1
nx1 þ k2

s2
nx2

k3
s3
nx3

; ð30:3Þ

or

h1 ¼ 0; h2 ¼ 1; h3 ¼ �1; h4 ¼ �
k1
s1
nx1 � k2

s2
nx2

k3
s3
nx3

: ð30:4Þ

Compatibility relation demonstrates the relationships between
these time evolution equations, and it could be derived easily by
the vectors above, as

a1�Eq: ð18:1Þþa2�Eq: ð18:2Þþa3�Eq: ð18:3Þþa4�Eq: ð18:4Þ¼0:
ð31Þ

The compatibility relation suggests how the variables change
with others.

3. ADI scheme based on staggered grids

3.1. Algorithm and approach

An improved ADI scheme is here proposed specifically for
hyperbolic heat conduction in this section. The hybrid representa-
tion is adopted and the whole mesh is established based on stag-
gered grids. This scheme has three advantages. The first one is
the staggered grids. Special attention are paid to the structure of
calculation regime and grids for the first time, which is out of the
consideration of conventional ADI method. However, it is rational
in the analyses of this problem. If the energy conservation equation
is integrated over the unit volume, which yieldsZ
V

qCv
@T
@t

� �
dV þ

Z
V
ðr � q!ÞdV ¼ 0: ð32Þ

Gauss theorem could transform the volume integration into
surface integration as

@
R
V ðqCvTÞdV

@t
þ
Z
S
ð n!� q!ÞdS ¼ 0: ð33Þ

From the equation above, it is found that in the control volume,
the average temperature and boundary heat flux are both neces-
sary. However, they are not defined at the same position in Eq.
(33). Therefore, it is better to locate the discrete temperature field
and heat flux field at staggered grids. In this paper, the temperature
field is defined at the grid nodes while the heat flux field is defined
between the nodes. Since the heat flux is a vector, the heat fluxes in
x and y directions are denoted as qx and qy, placed between the
nodes along x and y coordinates, respectively, as shown in Fig. 1.
The advantage of this distribution is that the discrete variables
are sorted into several couples, combining the heat flux constitu-
tive equation and energy conservation equation together and mak-
ing it possible to solve these equations in a simpler way. The
second advantage is that the heat flux and temperature fields are
expressed explicitly while in other method only the temperature
field or the heat flux field is derived. As discussed above, the heat
flux field cannot be derived solely from temperature field. In fact,
this scheme retains the vector characteristics of heat flux. The third
advantage is that the difference schemes are specially treated so
that chasing method can be used instead of iteration. Although



Fig. 1. The meshing sketch of discrete temperature and heat flux fields at staggered
grids.
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there are also disadvantages that the scheme is transformed into a
conditionally stable one, it can save a lot of computing time and
storage space and the convergence condition is usually satisfied
after the variables are nondimensionalized.

Here the improved ADI scheme is applied to a two-dimensional
transient heat conduction problem in a rectangular isotropic calcu-
lation regime. The procedure divides one temporal interval into
two parts: one part from tn to t(n+1/2) and the other part from
t(n+1/2) to t(n+1). In the first part, T and qx are calculated implicitly
in x direction, explicitly in other directions and qy is calculated
explicitly in all directions. For convenience, the notations to be
used are listed as follows:

Tn
i;j: temperature field at position (i,j) at time t = tn;

qn
x;iþ1

2;j
; qn

y;i;jþ1
2
: heat flux field defined between the temperature

nodes at time t = tn;
dþx ¼ E1

x � 1; d�x ¼ 1� E�1
x : forward difference operator and back-

ward difference operators, where E1
x and E�1

x are shifting opera-

tors satisfying E1
xT

n
i;j ¼ Tn

iþ1;j and E�1
x Tn

i;j ¼ Tn
i�1;j;

Dt: time step;
rx ¼ Dt

Dx ; ry ¼ Dt
Dy: step ratios in x and y directions.

The difference equation set of the hybrid representation is writ-
ten as

qCv T
nþ1

2
i;j � Tn

i;j


 �
þ 1
2
rxd

�
x q

nþ1
2

x;iþ1
2;j
þ 1
2
ryd

�
y q

n
y;i;jþ1

2
¼ 0; ð34:1Þ

1
2
Dtqn

x;iþ1
2;j
þ s q

nþ1
2

x;iþ1
2;j
� qn

x;iþ1
2;j


 �
¼ �krxd

þ
x T

nþ1
2

i;j ; ð34:2Þ

1
2
Dtqn

y;i;jþ1
2
þ s q

nþ1
2

y;i;jþ1
2
� qn

y;i;jþ1
2


 �
¼ �kryd

þ
y T

nþ1
2

i;j : ð34:3Þ

Because of the staggered mesh, the locations of qx, qy and T are
interlaced. It is found that Eqs. (34.1) and (34.2) can be solved at
the same time, giving the values of qx and T at time t = t(n+1/2). Then
the variable qy is solved, using the existing data of qx and T at time
t = t(n+1/2). Chasing method is adopted to derive the solution from
Eqs. (34.1) and (34.2). The solution vector z is defined as the com-
bination of temperature vector and heat flux vector in x direction,

z ¼ q
nþ1

2
x;12;j

; T
nþ1

2
1;j ; q

nþ1
2

x;32;j
; . . . ; q

nþ1
2

x;n�1
2;j
; T

nþ1
2

n;j ; q
nþ1

2
x;nþ1

2;j

h i
ð35Þ

The algebraic equation then can be rewritten into matrix form
as
Bz ¼ F; ð36Þ
where B is the coefficient matrix of solution vector z, and F is the
non-homogeneous term. Besides, B is a tridiagonal matrix, perfectly
fit for chasing method. In the next step, B can be split into two
matrixes as

B ¼ LU; ð37Þ
where L is a lower triangular matrix and U is an upper triangular
matrix. Both are bivariate diagonal. Eq. (36) can then be trans-
formed into

Lw ¼ F; ð38:1Þ

Uz ¼ w; ð38:2Þ
where w is the intermediate vector variable. The algebraic equation
can be solved by chasing method without iteration.

The algorithm for the part from t = t(n+1/2) to t = t(n+1) resembles
the former part, where qy and T in y direction is calculated implic-
itly and qx in x direction is calculated explicitly,

qCv Tnþ1
i;j � T

nþ1
2

i;j


 �
þ 1
2
rxd

�
x q

nþ1
2

x;iþ1
2;j
þ 1
2
ryd

�
y q

nþ1
y;i;jþ1

2
¼ 0; ð39:1Þ

1
2
Dtq

nþ1
2

y;i;jþ1
2
þ s qnþ1

y;i;jþ1
2
� q

nþ1
2

y;i;jþ1
2


 �
¼ �kryd

þ
y T

nþ1
i;j ; ð39:2Þ

1
2
Dtq

nþ1
2

x;iþ1
2;j
þ s qnþ1

x;iþ1
2;j
� q

nþ1
2

x;iþ1
2;j


 �
¼ �krxd

þ
x T

nþ1
i;j : ð39:3Þ

And the chasing method is used again for the coupled Eqs.
(39.1) and (39.2). The procedure for each computation time step
is summarized as follows:

(1) For the part from t = tn to t = t(n+1/2), the partial differential
equation set is discretized implicitly in x direction and
explicitly in y direction.

(2) The tridiagonal system for qx and T is solved, using the chas-
ing method.

(3) The variable qy is calculated from the existing data of qx and
T at time step t = t(n+1/2).

(4) The process (1) is repeated, but here the partial differential
equation set is discretized implicitly in y direction and
explicitly in x direction.

(5) The tridiagonal system for qy and T is solved using the chas-
ing method.

(6) The variable qx is calculated from the existing data of qy and
T at time step t = t(n+1).

This method can be applied to 3-dimensional problems as well.
In that case, one temporal interval are divided into three parts,

namely from tn to tðnþ
1
3Þ, from tðnþ

1
3Þ to tðnþ

2
3Þ and from tðnþ

2
3Þ to

tðnþ1Þ. The alternative direction implicit method are utilized and
the following procedures are similar. The stability conditions are
analyzed in the next section.

3.2. Calculation accuracy and stability condition

The calculation accuracy of the improved ADI scheme is studied.
The complete difference algebraic equation set for the time from
t = tn to t = t(n+1) is

qCv Tnþ1
i;j � Tn

i;j


 �
þ rxd

�
x q

nþ1
2

x;iþ1
2;j
þ 1
2
ryd

�
y qnþ1

y;i;jþ1
2
þ qn

y;i;jþ1
2


 �
¼ 0; ð40:1Þ

s qnþ1
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2;j
� qn
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2
Dt q

nþ1
2
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2;j
þ qn

x;iþ1
2;j


 �
� krxd

þ
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i;j þ T
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2
i;j


 �
;

ð40:2Þ



Fig. 2. The sketch of the regime and girds in two-dimensional heat conduction.
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2
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þ
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2
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ð40:3Þ
The error term is second order in space and first order in time.

Although only the forward difference and backward difference
schemes are used, the spatial accuracy reaches second order due
to the staggered grids. As for the stability condition, the chasing
method are used to solve the tridiagonal matrix and the strongly
diagonally dominant condition ensures that the chasing method
is stable and valid. The following condition is supposed to be satis-
fied to make the coefficient matrix strongly diagonal:

minðs=k;qCV Þ P max
Dt
Dx

;
Dt
Dy

� �
: ð41:1Þ

In Eq. (41.1), the media are assumed to be isotropic. When they
are not, the minimum of the thermal property values in the left is
required to be larger than the maximum of the grid properties in
the right of the equation as shown in Eq. (41.2),

min
i

ðsi=ki;qiCViÞ P max
Dt
Dx

;
Dt
Dy

� �
: ð41:2Þ

And if this scheme is applied to 3-dimensional regimes, the sta-
bility condition becomes

minðs=k;qCV Þ P 2
3
�max

Dt
Dx

;
Dt
Dy

� �
; ð41:3Þ

which gives more flexible requirements. Before calculation, the
state variables are nondimensionalized to simplify the calculations
and requirements. Based on the Lax theorem, the difference equa-
tions are consistent with the partial different equations and stay
stable in the calculations, so the convergence is reached.

Another advantage of this method is the boundary condition.
Since at the boundary the heat flux field and the temperature field
cannot be defined at the same time at one boundary because of the
compatibility relation, the results obtained in Section 2.3 are satis-
fied automatically. There is no need to deal with the boundary con-
dition specifically.

4. Numerical simulations and discussion

A two-dimensional rectangular regime is simulated in this sec-
tion to study the vector characteristics of hyperbolic heat conduc-
tion phenomena and testify the improved ADI method. The regime
is shown in Fig. 2. The variables are nondimensionalized by the fol-
lowing rules:

x� ¼ x=d; t� ¼ t=t0; T
� ¼ T=T0; q�

x ¼ qx=q0; q
�
y ¼ qy=q0:

k� ¼ k=k0; ðqCvÞ� ¼ ðqCvÞ=ðqCvÞ0; Zq ¼ s=t0
ð42Þ
Fig. 3. The propagation profile sketches of thermal waves produced by heating hal
For convenience, the asterisks are uniformly omitted. The
regime length Lx and Ly equals 2 and 1 respectively, with the mesh-
ing grid size reaching 0.002 � 0.002. The whole regime is set at a
steady initial state with temperature T0. All the boundaries are adi-
abatic if there is no specific statement.

Example 1:

The first numerical example aims to testify the improved ADI
method and show the propagation phenomenon when a part of
the boundary is exposed to a sine-shaped heating pulse. At the
beginning, the whole regime is at an equilibrium temperature state
without initial heat flux. Then a part of the left boundary, the
region from 0.25 to 0.75, is heated by a laser pulse, providing a heat
flux boundary condition. The heating pulse is

qx ¼
A½1� cosð2pt=tpulseÞ� t 6 tpulse
0 t > tpulse

�
; ð43Þ

Fig. 3 shows the distribution of temperature field changing with
respect to time, calculated by the ADI method. Because the thermal
wave concentrates mainly in the left-half of the regime, the figures
are plotted in the region [0,1] � [0,1] at time t = 0.2, 0.5 and 0.7.
The value of temperature is denoted by color. It is found that the
thermal wave propagates along the original direction of heat flux
and maintains the shapes as time goes on. Besides, due to inhomo-
geneous temperature field, the heat flux in y direction appears and
diffracts the thermal waves, like water ripples.

Example 2:

In this example, the disadvantage of the temperature representa-
tion is demonstrated, i.e. missing some direction information at
initial state. Two initial conditions are required in temperature
f of the left boundary from y = 0.25 to y = 0.75: (a) t = 0.2, (b) t = 0.5, (c) t = 0.7.



Fig. 4. The temperature field profiles of the rectangular regime under the initial condition of state 1 at different time: (a) t = 0.1, (b) t = 0.4, (c) t = 0.8.

Fig. 5. The temperature field profiles of the rectangular regime under the initial condition of state 2 at different time: (a) t = 0.1, (b) t = 0.4, (c) t = 0.8.
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representation, while the derivative of temperature field with
respect to time might be confusing. According to the energy con-
servation equation, this derivative gives the divergence of heat
flux. But it cannot depict the direction information of initial heat
flux. For example, if the initial derivative of temperature with
respect to time is

@T
@t

ðt ¼ 0; x; yÞ ¼ Asin p x
Lx

� �
sin p y

Ly

� �
; ð44Þ

and the initial temperature is

Tðt ¼ 0; x; yÞ ¼ T0ðx; yÞ; ð45Þ
there are several couples of qx and qy that can produce this temper-
ature derivative (44), among which these two are considered:

State 1:

qxðt ¼ 0; x; yÞ ¼ �A
Lx
p
sin p x

Lx

� �
sin p y

Ly

� �
; ð46Þ

State 2:

qyðt ¼ 0; x; yÞ ¼ �A
Ly
p sin p

x
Lx

� �
sin p

y
Ly

� �
: ð47Þ

Obviously, these two states lead to different heat conduction
phenomena. The simulations based on the ADI method proposed
in Section 3 are conducted to give a better understanding of the
difference.

The propagation sketches of temperature field profiles for dif-
ferent initial heat fluxes are displayed in Figs. 4 and 5 where the
values of temperature field are denoted by color. Thermal waves
under the initial condition of state 1 are shown in Fig. 4(a–c) while
that under the initial condition of state 2 are shown in Fig. 5(a–c).
Thermal waves oscillate between the adiabatic boundaries, while
dissipating. Fig. 4 has the initial heat flux of qx and the temperature
field oscillates mainly along x direction. Fig. 5 has the initial heat
flux of qy and the temperature field oscillates mainly along y direc-
tion. Although the oscillation phenomena are similar, different ini-
tial heat flux directions lead to totally different energy conveying
directions. Nevertheless, there is no difference between these
two states if they are expressed in the temperature representation.
This example reveals that the temperature representation misses
the direction information of initial heat flux.

Example 3:

In this example, a new feature of hyperbolic heat conduction is
considered, where the distribution of temperature gradient is not
compatible with the distribution of heat flux. This situation is
unphysical for Fourier’s law, because the heat flux is totally deter-
mined by temperature gradient. Nevertheless, in hyperbolic heat
conduction, the heat flux field is a relatively independent variable,
making the incompatibility possible. By incompatibility, it means
the direction of heat flux is not along the direction of temperature
gradient. When a thermal wave penetrates into a medium where
there already exists temperature gradients, this assumption comes
true. For convenience, the calculation regime is limited to a 1 � 1
region. Initial heat flux and initial temperature gradient exist in
the domain (x, y) 2 D[0,0.5] � [0,0.5], as

Tðt ¼ 0; x; yÞ ¼ ðT1 � T0Þsin 2p x
Lx


 �
sin 2p y

Ly


 �
þ T0 ðx; yÞ 2 D

T0 ðx; yÞ R D

(
;

ð48Þ



Fig. 6. The propagation sketches of temperature profile with different initial heat fluxes and temperature conditions: (a–c) with initial temperature condition and initial heat
flux at time t = 0, 0.2 and 0.4; (d–f) with initial temperature condition and no initial heat flux at time t = 0, 0.2 and 0.4.
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qxðt ¼ 0; x; yÞ ¼ q0sin 2p x
Lx


 �
sin 2p y

Ly


 �
ðx; yÞ 2 D

0 ðx; yÞ R D

(
; ð49:1Þ
qyðt ¼ 0; x; yÞ ¼ 0: ð49:2Þ
The control group is analyzed at the same time, where there is

not initial heat flux, namely

qxðt ¼ 0; x; yÞ ¼ 0; ð50:1Þ
qyðt ¼ 0; x; yÞ ¼ 0: ð50:2Þ
The results are shown in Fig. 6. Fig. 6(a)–(c) are the temperature

profiles with initial heat flux, while Fig. 6(d) and (e) are those with-
out initial heat flux. The nondimensional time are taken as t = 0,
0.2, 0.4. The coordinate axes x and y represent the length and
width of the region, and the temperature of the region is labeled
by color. When there is no initial heat flux, the temperature profile
propagates in a circular behavior, as shown in Fig. 6(d) and (e),
while it propagates along the direction of heat flux when there
exists initial heat flux, as shown in Fig. 6(a)–(c). It can be found that
the propagation direction and profile pattern are altered by the
appearance of initial heat flux.

When discussing the heat conduction in a plane or a body, it is
important to know not only how much thermal energy is con-
veyed, but also where the energy goes. When there is no initial
heat flux, the perturbation leaves the beginning spot and spreads
like ripples without preferential direction. The thermal energy is
distributed almost evenly in all possible directions. Nevertheless,
initial heat flux takes effect to change the way that energy is con-
veyed. When the existing heat flux is not compatible with temper-
ature gradient as shown in Fig. 6(a)–(c), the direction preference of
thermal waves is obvious. The majority of thermal energy travels
along the direction of heat flux, while of course some of it spreads
as ripples. In this way, the energy distribution is controlled. As it is
implied in the hyperbolic heat conduction equation, heat flux
changes according to not only temperature gradient but also itself,
which makes the phenomena different from classical Fourier heat
conduction, providing new ways for heat transport manipulation.

In the above examples, the first one displays the usual propaga-
tion pattern of thermal waves in a plane when half of the boundary
is exposed to a heating pulse, including dissipation and diffraction.
It is found that the propagation patterns are retained for a long
time due to the vector characteristics. The second one shows the
advantage of the hybrid representation over the temperature rep-
resentation. In this example, the initial conditions are the same in
the temperature representation, while in the hybrid representa-
tion, the different directions of initial heat fluxes cause totally dif-
ferent propagation patterns. In the last example, the influence of
initial heat flux on the way that the thermal energy is conveyed
has been demonstrated. All these examples emphasize the signifi-
cance of the vector characteristics of thermal waves. It was thought
that the heat flux is the conjugate variable of the temperature, but
in this paper, it turns out to be untrue. Heat flux field is relatively
independent and sometimes mismatches with temperature field,
leading to many fascinating phenomena.

Now we turn our attention to the microscopic picture of the
vector characteristics of heat waves. Thermal waves propagate in
the media due to the conservation of phonon momentum in dielec-
trics. The phonon distribution is far away from equilibrium state
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and the phenomena of ballistic heat transport [2,3] and phonon
hydrodynamics [58] occur. It means that phonons propagate to
the boundary at the other side without collisions or through nor-
mal process. The collisions of phonons in crystal are divided into
two kinds: the normal process (N process) where the phonon
momentum is conserved and the resistive process (R process)
where the conservation of phonon momentum is destroyed.
N process dominates in phonon hydrodynamics and the main
momentum is conserved. In transient heat conduction, the local
temperature is defined by the local phonon energy and the local
heat flux is defined by the phonon transport. If R process domi-
nates in the media, the phonon distribution is near equilibrium
Plank distribution, which is homogenous in all directions. Then
the heat flux is determined by the phonon density gradient,
namely the temperature gradient. Fourier’s law describes this kind
of heat conduction. However, if there are no collisions or N process
dominates, the majority of phonon momentum is conserved and
the phonon distribution cannot be described by Plank distribution
because of the direction preference. The heat flux field is deter-
mined by not only the phonon density gradient, but also the histor-
ical state of phonons. The hyperbolic heat conduction equations
arise and the hyperbolic behaviors imply that the thermal energy
can be also transported by the original, nondissipative phonons.
Therefore, the initial phonon momentum, which has a correspond-
ing relationship with initial heat flux, is significant and the direc-
tions of phonons lead to vector characteristics. The temperature,
denoting the local phonon density and the heat flux, denoting
the phonon momentum both determine the thermal energy distri-
bution patterns in hyperbolic heat conduction.

5. Conclusions

Hyperbolic heat conduction models imply that thermal energy
is conveyed in wavelike behaviors. It is different from the parabolic
heat conduction because of its vector characteristics, and also dif-
ferent from the wave propagation due to the independence of heat
flux field from temperature field. In this paper, these intrinsic dif-
ferences are demonstrated and the vector characteristics are high-
lighted. Three mathematical representations consisting of the
temperature representation, the hybrid representation and the
heat flux representation are analyzed, all of which are able to
describe the system individually but with their own advantages
and disadvantages. Characteristics analyses are adopted to give
specific boundary conditions, and at the same time the feature
faces and compatibility relation are found.

An improved ADI method based on staggered grids which is
compatible with the physical meaning of hyperbolic heat conduc-
tion has been developed. The heat flux field and the temperature
field are located at different positions, making it possible to solve
these variables at the same time by chasing method. The new
scheme adopts the hybrid representation and retains sufficient
original transport information, perfectly demonstrating the vector
characteristics. Although the stability condition of the difference
scheme becomes conditional, chasing method is adopted instead
of iteration, enabling to save a lot of computation time and storage
memory. The scheme has second order accuracy in space and first
order accuracy in time. Besides, three numerical simulations are
conducted to study the influence of the vector characteristics,
which imply possible ways for precise thermal energy
management.

It is found that in the CV equation, the interactions among heat
fluxes in different directions are rare due to the lack of convective
term. In three-dimensional heat conduction problems, for each
boundary only one variable or one relationship of the variables is
required, and the extra boundary variable relationships might
conflict with the compatibility relation. Vector characteristics are
significant in hyperbolic heat conduction system, because it deter-
mines the propagation direction of the thermal energy. Vector
characteristics have two significant influences. One is that during
propagation, the general patterns and directions of thermal waves
are retained. The other suggests that the direction in which the
thermal energy is transported relies on not only the temperature
gradient profile but also the heat flux direction. Due to the possible
mismatch between the heat flux and the temperature gradient pro-
files, the propagation phenomena might be totally different even
under the same initial condition expressions described by the tem-
perature and the derivative of temperature with respect to time. It
shows the influence of heat flux direction. The initial heat flux
gives an obvious direction preference of energy conveying, instead
of ripple-like spreading behaviors. As for the microscopic image,
hyperbolic heat conduction arises due to the conservation of pho-
non momentum. The heat flux is determined by not only the pho-
non density gradient, but also the historical state of phonons and
the thermal energy can be conveyed through phonon momentum
conservation process. Therefore, the initial heat flux is significant
because it provides the original phonon momentum and the prop-
agation directions of phonons lead to the vector characteristics.
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